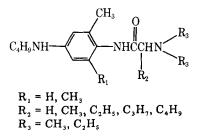
## Local Anesthetics: 2-N,N-Dialkylaminoacyl-2'-methyl (or 2',6'-dimethyl)-4'butylaminoanilides

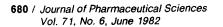

## WILLIAM O. FOYE \*, CHAUR-MING JAN, and BERTIL H. TAKMAN \*

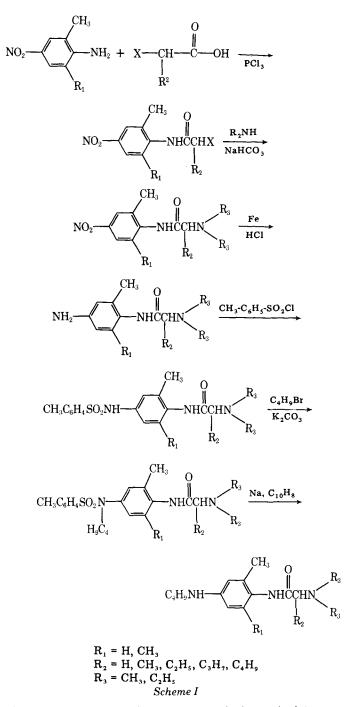
Received June 8, 1981, from the Samuel M. Best Research Laboratory, Massachusetts College of Pharmacy and Allied Health Sciences, Boston, MA 02115; and the \*Astra Pharmaceutical Products, Inc., Worcester, MA 01606. Accepted for publication September 29, 1981.

**Abstract**  $\Box$  A series of tetracaine analogs based on the lidocaine structure, having a 2'-methyl-(or 2',6'-dimethyl)-4'-butylaminoanilide moiety with  $\alpha$  substitution on the dialkylaminoacyl function, has been synthesized. Local anesthetic activity was found with the *N*-butyl derivatives in both the 2'-methyl and 2',6'-dimethyl series using both the method of rabbit cornea loss of reflex and spinal anesthesia in sheep. Duration of activity of the compounds was greater than that of lidocaine, but less than that of tetracaine, with comparable dosage levels.

**Keyphrases** □ Anesthetics--2-*N*,*N*- dialkylaminoacyl-2'-methyl (or 2',6'-dimethyl)-4'-butylaminoanilides, local anesthetic, rabbits, sheep □ Tetracaine—synthesis of analogs from lidocaine structure □ Lidocaine-tetracaine synthesis

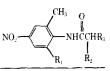
Tetracaine is employed as both an injectable and topical local anesthetic and remains in common use for spinal anesthesia (1). This compound, an ester, is fairly stable but suffers some loss of potency during autoclaving (2). To provide greater stability and possibly lower toxicity, a series of amide analogs based on the lidocaine structure has been synthesized. This series includes both 2-methyl and 2,6-dimethyl substituents in the aromatic ring, as well as alkyl groups on the  $\alpha$  position of the aliphatic side chain, giving structures of Type 1:





A few sterically hindered tetracaine analogs have been prepared previously: several 2-dialkylaminoethyl 4'-butylamino-2',6'-dimethylbenzoates and two 2-N,N-dialkylaminoethyl-4'-butylamino-2',6'-dimethylbenzamides (3). The latter compounds showed a long duration of activity but were appreciably toxic. No 2-N,N-dialkylaminoacyl-2'-methyl (or 2',6'-dimethyl)-4'-butylaminoanilides, which comprise true lidocaine-type analogs of tetracaine, have been reported.

### **RESULTS AND DISCUSSION**

**Synthesis**—The synthetic procedure followed is outlined in Scheme I. The starting material for the synthesis of the 2,6-dimethylanilides, 2,6-dimethyl-4-nitroaniline, was prepared by the method of Wepster (4), which involved the nitration of the N-tosyl derivative of 2,6-dimethylaniline. Attempts to nitrate N-chloroacetyl-2,6-dimethylanilide failed.

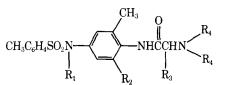

The preparation of some of the N-chloroacyl-2'-methyl-4'-nitroanilides was carried out using the procedure of Löfgren (5), using the reaction of chloroacyl chlorides with 2-methyl-4-nitroaniline. When this reaction was applied to 2,6-dimethyl-4-nitroaniline, no amide resulted. For the preparation of the N-haloacyl-2',6'-dimethyl-4'-nitroanilides, or 2'methyl derivatives where the acid halide was not commercially available,





the method of Lemaire et al. (6) was successful. This involved the preparation of the acid chloride in situ with phosphorus trichloride.

The N,N-dialkylaminoacyl-2'-methyl (or 2',6'-dimethyl)-4'-nitroanilides were obtained in conventional fashion from treatment of the  $\alpha$ -haloacylanilides with dimethylamine hydrochloride in the presence of anhydrous sodium bicarbonate or from diethylamine. E<sub>2</sub> elimination was observed with the longer chain acyl functions. Physical constants of the haloacyl and dialkylaminoacyl derivatives are listed in Table I.




| R <sub>1</sub>  | $R_2$                         | $ m R_3$                                       | Yield, % | mp        | Formula                                                        | $\frac{1R, C=0}{cm^{-1}}$ | Analysis<br>Calc.                                  | %<br>Foun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------|-------------------------------|------------------------------------------------|----------|-----------|----------------------------------------------------------------|---------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H               | Н                             | Cl                                             | 74       | 121-122.5 | $C_9H_9ClN_2O_3$                                               | 1675                      | C 47.28<br>H 3.98<br>N 12.25                       | 47.2<br>4.1<br>12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| н               | CH <sub>3</sub>               | Cl                                             | 70       | 115116    | $C_{10}H_{11}ClN_2O_3$                                         | 1670                      | Cl 15.51<br>C 49.50<br>H 4.57                      | 15.4<br>49.6<br>4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н               | $C_2H_5$                      | Br                                             | 87       | 142-144   | $\mathrm{C}_{11}\mathrm{H}_{13}\mathrm{BrN}_{2}\mathrm{O}_{3}$ | 1665                      | N 11.54<br>Cl 14.61<br>C 43.87<br>H 4.35           | $11.4 \\ 14.7 \\ 44.0 \\ 4.4 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0$ |
| Н               | $C_3H_7$                      | Br                                             | 84       | 131.5–133 | $\mathrm{C}_{12}H_{15}BrN_2O_3$                                | 1665                      | N 9.30<br>Br 26.53<br>C 45.73<br>H 4.80            | 9.2<br>26.7<br>45.8<br>4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Н               | $C_4H_9$                      | Br                                             | 81       | 118–120   | $C_{13}H_{17}BrN_2O_3$                                         | 1665                      | N 8.89<br>Br 25.35<br>C 47.43<br>H 5.21            | 8.7<br>25.1<br>47.5<br>5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CH <sub>3</sub> | н                             | Cl                                             | 77       | 234-236   | $C_{10}H_{11}ClN_2O_3$                                         | 1660                      | N 8.51<br>Br 24.27<br>C 49.50<br>H 4.57            | 8.3<br>24.4<br>49.6<br>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $CH_3$          | CH <sub>3</sub>               | Cl                                             | 53       | 187–189   | $\mathrm{C_{11}H_{13}ClN_2O_3}$                                | 1660                      | N 11.54<br>Cl 14.61<br>C 51.47<br>H 5.10           | 11.4<br>14.7<br>51.5<br>5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CH3             | $C_2H_5$                      | Br                                             | 74       | 203-205   | $C_{12}H_{15}BrN_2O_3$                                         | 1650                      | N 10.91<br>Cl 13.81<br>C 45.73<br>H 4.80<br>N 8.89 | 10.7<br>14.0<br>45.8<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CH3             | C <sub>3</sub> H <sub>7</sub> | Br                                             | 73       | 181-183   | $C_{13}H_{17}BrN_2O_3$                                         | 1650                      | N 8.89<br>Br 25.35<br>C 47.43<br>H 5.21<br>N 8.51  | 8.7<br>25.1<br>47.5<br>5.5<br>8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CH3             | C4H9                          | Br                                             | 71       | 138-140   | $\mathrm{C}_{14}\mathrm{H}_{19}\mathrm{BrN}_{2}\mathrm{O}_{3}$ | 1655                      | Br 24.27<br>C 48.99<br>H 5.58<br>N 8.16            | 24.2<br>49.0<br>5.0<br>8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| н               | н                             | N(CH <sub>3</sub> ) <sub>2</sub>               | 79       | 77~78     | $C_{11}H_{15}N_3O_3$                                           | 1695                      | Br 23.28<br>C 55.69<br>H 6.37                      | 22.9<br>55.0<br>6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н               | $CH_3$                        | $N(CH_3)_2$                                    | 87       | 81-82     | $C_{12}H_{17}N_3O_3$                                           | 1700                      | N 17.71<br>C 57.36<br>H 6.82                       | 17.8<br>57.4<br>6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н               | $C_2H_5$                      | N(CH <sub>3</sub> ) <sub>2</sub>               | 85       | 54.5-56   | $C_{13}H_{19}N_3O_3$                                           | 1705                      | N 16.72<br>C 58.85<br>H 7.22<br>N 15.84            | 16.8<br>58.9<br>7.1<br>15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Н               | $C_3H_7$                      | N(CH <sub>3</sub> ) <sub>2</sub>               | 86       | 85-86.5   | $C_{14}H_{21}N_{3}O_{3} \\$                                    | 1700                      | C 60.20<br>H 7.58                                  | 60.2<br>7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Н               | C4H9                          | N(CH <sub>3</sub> ) <sub>2</sub>               | 82       | 69-70     | $C_{15}H_{23}N_{3}O_{3} \\$                                    | 1700                      | N 15.04<br>C 61.41<br>H 7.90<br>N 14.32            | 14.9<br>61.9<br>7.7<br>14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CH <sub>3</sub> | Н                             | N(CH <sub>3</sub> ) <sub>2</sub>               | 87       | 91–93     | $C_{12}H_{17}N_{3}O_{3} \\$                                    | 1670                      | C 57.36<br>H 6.82                                  | 14.2<br>57.3<br>6.7<br>16.6<br>60.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CH3             | $C_2H_5$                      | N(CH <sub>3</sub> ) <sub>2</sub>               | 80       | 125–127   | $C_{14}H_{21}N_{3}O_{3}\\$                                     | 1655                      | N 16.72<br>C 60.20<br>H 7.58<br>N 15.04            | 10.0<br>60.1<br>7.4<br>15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CH <sub>3</sub> | $C_3H_7$                      | N(CH <sub>3</sub> ) <sub>2</sub>               | 82       | 106-108   | $C_{15}H_{23}N_3O_3$                                           | 1650                      | C 61.41<br>H 7.90                                  | 61.6<br>7.7<br>14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CH3             | $C_4H_9$                      | N(CH <sub>3</sub> ) <sub>2</sub>               | 75       | 95–96     | $C_{16}H_{25}N_3O_3$                                           | 1650                      | N 14.32<br>C 62.52<br>H 8.20<br>N 13.67            | 62.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Н               | Н                             | $N(C_2H_5)_2$                                  |          | 73–74.5   | $C_{13}H_{19}N_3O_3$                                           | 1700                      | N 13.67<br>C 58.85<br>H 7.22<br>N 15.84            | 8.1<br>13.1<br>58.9<br>7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Н               | $CH_3$                        | $N(C_2H_5)_2$                                  |          | 88-89     | ${\rm C}_{14} H_{21} N_3 O_3$                                  | 1700                      | N 15.84<br>C 60.20<br>H 7.58<br>N 15.04            | 60.2<br>7.4<br>15.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н               | $C_2H_5$                      | N(C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> | 80       | 69–70     | $C_{15}H_{23}N_3O_3$                                           | 1710                      | N 15.04<br>C 61.41<br>H 7.90<br>N 14.32            | 61.4<br>7.8<br>14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table I---Physical Properties of 2-N, N-Dialkylaminoacyl-2'-methyl (or 2',6'-dimethyl)-4'-nitroanilides

Continued on next page

| D               | R. R.            | R <sub>o</sub> R                               |                 | R <sub>2</sub> R <sub>3</sub> Yiel |                      | <b>X</b> 7: ) ) <i>(</i> 7 | 7.)) m                                  |                                  | IR, $C = 0$ | Analysis, % |  |  |
|-----------------|------------------|------------------------------------------------|-----------------|------------------------------------|----------------------|----------------------------|-----------------------------------------|----------------------------------|-------------|-------------|--|--|
| $R_1$           | $\mathbf{K}_2$   | R <sub>3</sub>                                 | Yield, %        | mp                                 | Formula              | $cm^{-1}$                  | Calc.                                   | Found                            |             |             |  |  |
| Н               | $C_3H_7$         | $N(C_2H_5)_2$                                  | 82              | 56-58                              | $C_{16}H_{25}N_3O_3$ | 1710                       | C 62.52<br>H 8.20                       | 62.73<br>8.05                    |             |             |  |  |
| Н               | $C_4H_9$         | N(C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> | <sup>.</sup> 79 | 52–53                              | $C_{17}H_{27}N_3O_3$ | 1705                       | N 13.67<br>C 63.53<br>H 8.47            | 13.51<br>63.61<br>8.38           |             |             |  |  |
| CH <sub>3</sub> | н                | $N(C_2H_5)_2$                                  | 90              | 100-101                            | $C_{14}H_{21}N_3O_3$ | 1700                       | N 13.07<br>C 60.20<br>H 7.58            | $13.13 \\ 60.34 \\ 7.80 \\ 1100$ |             |             |  |  |
| $CH_3$          | $C_2H_5$         | $N(C_2H_5)_2$                                  | 47              | 84-86                              | $C_{16}H_{25}N_3O_3$ | 1650                       | N 15.04<br>C 62.52<br>H 8.20            | 14.86<br>62.35<br>8.15           |             |             |  |  |
| $CH_3$          | $C_3H_7$         | $N(C_2H_5)_2$                                  | 43              | 94-96                              | $C_{17}H_{27}N_3O_3$ | 1650                       | N 13.67<br>C 63.53<br>H 8.47            | 13.73<br>63.39<br>8.41           |             |             |  |  |
| CH <sub>3</sub> | C₄H <sub>9</sub> | $N(C_2H_5)_2$                                  | 41              | 73–75                              | $C_{18}H_{29}N_3O_3$ | 1650                       | N 13.07<br>C 64.64<br>H 8.71<br>N 12.53 | 12.92<br>64.52<br>8.68<br>12.44  |             |             |  |  |

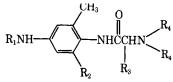


### Table II—Physical Properties of 2-N,N-Dialkylaminoacyl-2'-methyl (or 2,'6'-Dimethyl-4'-(p-toluenesulfonamido)anilides

|                 |                 | D                             |                                   | Wield W        |               | Formula                                                                         | IR, C=0<br>cm <sup>-1</sup>               | Analysis<br>Calc.                                 | s, %<br>Found                                                        |
|-----------------|-----------------|-------------------------------|-----------------------------------|----------------|---------------|---------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|
| $\frac{R_1}{H}$ | $\frac{R_2}{H}$ |                               | R <sub>4</sub><br>CH <sub>3</sub> | Yield, %<br>90 | mp<br>138–139 | $\frac{\text{Formula}}{\text{C}_{18}\text{H}_{23}\text{N}_3\text{O}_3\text{S}}$ | <u>cm                                </u> | C 59.81                                           | 59.76                                                                |
| н               | н               | н                             | $C_{2}H_{5}$                      | 90             | 119-121       | $C_{18}H_{23}N_{3}O_{3}S$<br>$C_{20}H_{27}N_{3}O_{3}S$                          | 1660                                      | H 6.41<br>N 11.62<br>S 8.87<br>C 61.67            | $\begin{array}{r} 6.47 \\ 11.50 \\ 9.02 \\ 61.81 \end{array}$        |
| н               | Н               | CH <sub>3</sub>               | $C_2H_5$                          | 85             | 67–68.5       | $C_{21}H_{29}N_3O_3S$                                                           | 1670                                      | H 6.99<br>N 10.79<br>S 8.23<br>C 62.50<br>H 7.24  | $7.06 \\ 10.65 \\ 8.31 \\ 63.07 \\ 7.44$                             |
| н               | Н               | $C_2H_5$                      | $CH_3$                            | 82             | 128-130       | $C_{20}H_{27}N_3O_3S$                                                           | 1660                                      | N 10.41<br>S 7.95<br>C 61.67<br>H 6.99<br>N 10.79 | $10.02 \\ 7.70 \\ 61.36 \\ 6.96 \\ 10.60 \\ 0.07$                    |
| н               | Н               | $C_2H_5$                      | $C_2H_5$                          | 78             | 54–57         | $C_{22}H_{31}N_3O_3S$                                                           | 1665                                      | S 8.23<br>C 63.28<br>H 7.48<br>N 10.06<br>S 7.68  | $\begin{array}{r} 8.37 \\ 63.30 \\ 7.61 \\ 9.85 \\ 7.64 \end{array}$ |
| н               | н               | $C_3H_7$                      | $CH_3$                            | 87             | 81-84         | $C_{21}H_{29}N_3O_3S$                                                           | 1665                                      | C 67.28<br>H 7.27<br>N 8.72<br>S 6.65             | 67.41<br>7.32<br>8.82<br>6.68                                        |
| Н               | н               | $C_4H_9$                      | CH <sub>3</sub>                   | 69             | 8084          | $C_{22}H_{31}N_3O_3S$                                                           | 1670                                      | C 67.80<br>H 7.47<br>N 8.48<br>S 6.45             | $67.42 \\ 7.62 \\ 8.54 \\ 6.47$                                      |
| Ĥ               | $CH_3$          | Н                             | $CH_3$                            | 79             | 195–197       | $C_{19}H_{25}N_3O_3S$                                                           | 1650                                      | C 60.78<br>H 6.71<br>N 11.19<br>S 8.54            | $\begin{array}{c} 61.19 \\ 6.61 \\ 11.01 \\ 8.20 \end{array}$        |
| Н               | CH3             | н                             | $C_2H_5$                          | 64             | 160–162       | $C_{21}H_{29}N_3O_3S$                                                           | 1655                                      | C 62.50<br>H 7.24<br>N 10.41<br>S 7.95            | $62.65 \\ 7.18 \\ 10.26 \\ 7.95$                                     |
| Н               | CH3             | $C_2H_5$                      | $CH_3$                            | 73             | 182–184       | $C_{21}H_{29}N_3O_3S$                                                           | 1655                                      | C 62.50<br>H 7.24<br>N 10.41<br>S 7.95            | $62.28 \\ 7.30 \\ 10.00 \\ 7.77$                                     |
| Н               | CH3             | $C_2H_5$                      | $C_2H_5$                          | 81             | 174–177       | $C_{23}H_{33}N_3O_3S$                                                           | 1665                                      | C 64.01<br>H 7.71<br>N 9.74<br>S 7.43             | 64.07<br>7.60<br>9.71<br>7.39                                        |
| н               | CH3             | C <sub>3</sub> H <sub>7</sub> | CH3                               | 62             | 171–173       | $C_{22}H_{31}N_3O_3S$                                                           | 1650                                      | C 63.28<br>H 7.48<br>N 10.06<br>S 7.68            | 63.16<br>7.38<br>9.95<br>7.80                                        |

Table II-Continued

|                               | _                    | _                             | -              |          |             |                       | IR, $C = 0$      | Analysi                                                          |                                            |
|-------------------------------|----------------------|-------------------------------|----------------|----------|-------------|-----------------------|------------------|------------------------------------------------------------------|--------------------------------------------|
| R <sub>1</sub>                | <u>R<sub>2</sub></u> | R <sub>3</sub>                | R <sub>4</sub> | Yield, % | mp          | Formula               | cm <sup>-1</sup> | Calc.                                                            | Found                                      |
| Н                             | $CH_3$               | $C_3H_7$                      | $C_2H_5$       | 72       | 169 - 171   | $C_{24}H_{35}N_3O_3S$ | 1660             | C 64.69                                                          | 64.71                                      |
|                               |                      |                               |                |          |             |                       |                  | H 7.92                                                           | 7.82                                       |
|                               |                      |                               |                |          |             |                       |                  | N 9.43<br>S 7.20                                                 | 9.26<br>7.30                               |
| н                             | $CH_3$               | C <sub>4</sub> H <sub>9</sub> | $CH_3$         | 81       | 70-75       | $C_{23}H_{33}N_3O_3S$ | 1660             | S 7.20<br>C 64.01                                                | 64.12                                      |
| п                             | $CH_3$               | 04119                         | $CH_3$         | 01       | 10-10       | 0231133143030         | 1000             | H 7.71                                                           | 7.73                                       |
|                               |                      |                               |                |          |             |                       |                  | N 9.74                                                           | 9.58                                       |
|                               |                      |                               |                |          |             |                       |                  | S 7.43                                                           | 7.16                                       |
| Н                             | $CH_3$               | $C_4H_9$                      | $C_2H_5$       | 62       | 131-133     | $C_{25}H_{37}N_3O_3S$ | 1660             | C 65.33                                                          | 65.41                                      |
|                               |                      |                               |                |          |             |                       |                  | H 8.11                                                           | 7.98                                       |
|                               |                      |                               |                |          |             |                       |                  | N 9.14                                                           | 9.12                                       |
| <b>A 11</b>                   | **                   |                               | OIL            | 50       | 100 100     | C H NOS               | 1000             | S 6.98                                                           | 7.08                                       |
| C <sub>4</sub> H <sub>9</sub> | Н                    | Н                             | $CH_3$         | 79       | 102-103     | $C_{22}H_{31}N_3O_3S$ | 1690             | C 63.28<br>H 7.48                                                | 63.33                                      |
|                               |                      |                               |                |          |             |                       |                  | N 10.06                                                          | 7.54<br>10.02                              |
|                               |                      |                               |                |          |             |                       |                  | S 768                                                            | 7.63                                       |
| C₄H <sub>9</sub>              | Н                    | Н                             | $C_2H_5$       | 73       | 77-79       | $C_{24}H_{35}N_3O_3S$ | 1700             | S 7.68<br>C 64.69                                                | 64.85                                      |
| 04119                         |                      |                               | 02113          | 10       | 11 10       | 0241135113030         | 1100             | H 7.92                                                           | 7.80                                       |
|                               |                      |                               |                |          |             |                       |                  | N 9.43                                                           | 9.28                                       |
|                               |                      |                               |                |          |             |                       |                  | S 7.20                                                           | 7.34                                       |
| $C_4H_9$                      | н                    | $CH_3$                        | $C_2H_5$       | 63       | 110111      | $C_{25}H_{37}N_3O_3S$ | 1700             | C 65.33                                                          | 65.43                                      |
|                               |                      |                               |                |          |             |                       |                  | H 8.11                                                           | 8.06                                       |
|                               |                      |                               |                |          |             |                       |                  | N 9.14                                                           | 9.26                                       |
| <b>a</b> 11                   |                      | 0.11                          | <u>au</u>      | -        |             |                       |                  | S 6.98                                                           | 7.09                                       |
| C₄H9                          | H                    | $C_2H_5$                      | $CH_3$         | 78       | 74-75       | $C_{24}H_{35}N_3O_3S$ | 1695             | C 64.69                                                          | 64.58                                      |
|                               |                      |                               |                |          |             |                       |                  | H 7.92<br>N 9.43                                                 | 7.88<br>9.32                               |
|                               |                      |                               |                |          |             |                       |                  | S 7.20                                                           | 9.32<br>7.37                               |
| C <sub>4</sub> H <sub>9</sub> | Н                    | $C_2H_5$                      | $C_2H_5$       | 80       | 62-68       | $C_{26}H_{39}N_3O_3S$ | 1695             | C 65.93                                                          | 66.36                                      |
| 04119                         |                      | 02115                         | 02115          | 00       | 02-00       | 0261139143030         | 1050             | H 8.30                                                           | 8.42                                       |
|                               |                      |                               |                |          |             |                       |                  | N 8.87                                                           | 8.60                                       |
|                               |                      |                               |                |          |             |                       |                  | S = 6.77                                                         | 6.68                                       |
| C <sub>4</sub> H <sub>9</sub> | н                    | $C_3H_7$                      | $CH_3$         | 78       | 68-70       | $C_{25}H_{37}N_3O_3S$ | 1695             | C 65.33                                                          | 65.30                                      |
|                               |                      |                               |                |          |             | _                     |                  | H 8.11                                                           | 7.98                                       |
|                               |                      |                               |                |          |             |                       |                  | N 9.14                                                           | 9.07                                       |
| 0 H                           |                      | 0 <b>U</b>                    |                |          |             | a                     | 1005             | S 6.98                                                           | 7.16                                       |
| C <sub>4</sub> H <sub>9</sub> | Н                    | $C_4H_9$                      | $CH_3$         | 75       | 55 - 57     | $C_{26}H_{39}N_3O_3S$ | 1695             | C 65.93                                                          | 65.89                                      |
|                               |                      |                               |                |          |             |                       |                  | H 8.30                                                           | 8.44                                       |
|                               |                      |                               |                |          |             |                       |                  | N 8.87                                                           | 8.86                                       |
| C <sub>4</sub> H <sub>9</sub> | $CH_3$               | Н                             | $C_2H_5$       | 74       | 74-76       | $C_{25}H_{37}N_3O_3S$ | 1690             | $\begin{array}{ccc} { m S} & 6.77 \\ { m C} & 65.33 \end{array}$ | $\begin{array}{r} 6.74\\ 65.34\end{array}$ |
| 04119                         | 0113                 |                               | 02115          | 1.1      | 14-10       | 0251137143035         | 1050             | H 8.11                                                           | 8.06                                       |
|                               |                      |                               |                |          |             |                       |                  | N 9.14                                                           | 9.00                                       |
|                               |                      |                               |                |          |             |                       |                  | S 6.98                                                           | 7.15                                       |
| $C_4H_9$                      | $CH_3$               | $C_2H_5$                      | $C_2H_5$       | 72       | 117.5 - 120 | $C_{27}H_{41}N_3O_3S$ | 1650             | C 66.49                                                          | 66.65                                      |
|                               |                      |                               |                |          |             | 2                     |                  | H 8.47                                                           | 8.39                                       |
|                               |                      |                               |                |          |             |                       |                  | N 8.62                                                           | 8.56                                       |
| 0.11                          | 017                  | 0.11                          | 011            | 50       | 100         |                       | 10               | S 6.57<br>C 65.93                                                | 6.49                                       |
| $C_4H_9$                      | $CH_3$               | $C_3H_7$                      | $CH_3$         | 73       | 139 - 141   | $C_{26}H_{39}N_3O_3S$ | 1650             | C 65.93                                                          | 65.89                                      |
|                               |                      |                               |                |          |             |                       |                  | H 8.30                                                           | 8.36                                       |
|                               |                      |                               |                |          |             |                       |                  | N 8.87                                                           | 8.88                                       |
| C₄H9                          | $CH_3$               | $C_3H_7$                      | $C_2H_5$       | 79       | 97–99       | $C_{28}H_{43}N_3O_3S$ | 1650             | S 6.77<br>C 67.03                                                | 6.71                                       |
| ~41 IY                        | 0113                 | 03117                         | 02115          | 10       | 01-00       | 028114313030          | 1000             | H 8.64                                                           | 67.02<br>8.66                              |
|                               |                      |                               |                |          |             |                       |                  | N 8.37                                                           | 8.28                                       |
|                               |                      |                               |                |          |             |                       |                  | S 6.39                                                           | 6.40                                       |
| C <sub>4</sub> H <sub>9</sub> | $CH_3$               | $C_4H_9$                      | $CH_3$         | 71       | 124-125     | $C_{27}H_{41}N_3O_3S$ | 1650             | C 66.49                                                          | 66.42                                      |
|                               | 9                    |                               | v              |          |             | - 21410 - 345         |                  | H 8.47                                                           | 8.41                                       |
|                               |                      |                               |                |          |             |                       |                  | N 8.62                                                           | 8.58                                       |
|                               |                      |                               |                |          |             |                       |                  | S 6.57                                                           | 6.68                                       |


The reduction of the nitro group was done with iron and hydrochloric acid, according to the method of Clinton *et al.* (7), giving 85-95% yields of amine. The butylation of the 4-amino group was attempted by several procedures. Both direct alkylation with butyl bromide and reductive alkylation procedures using propionaldehyde and reducing agents gave mixtures of mono- and dibutylamino compounds. Monobutylation succeeded by using a modification of the method of Hendrickson and Bergeron (8), in which the amino group is first tosylated and then alkylated with butyl bromide. The alkylations generally required 5-10 days at room temperature. The regeneration of the amine from the *N*-butylsulfonamide was achieved in excellent yield by treatment with sodium naphthalene anion radical in 1,2-dimethoxyethane. The mechanism for this procedure is assumed to be the same as that proposed previously (9) for the sodium-liquid ammonia cleavage of toluenesulfonamides.

Physical constants of the 4'-N-tosyl intermediates prepared are listed in Table II, and of the 4'-amino and 4'-butylamino compounds are recorded in Table III.

Local Anesthetic Evaluation-Primary local anesthetic activity was

measured by determining loss of reflex of the rabbit cornea (10), using lidocaine for comparison. With this method, both time of onset and duration of action may be determined; testing data are recorded in Table IV. Of the 4'-amino compounds which were not N-butylated, none showed significant activity by this procedure. Of the N-butyl derivatives, the 2',6'-dimethyl compounds generally had a longer duration of action than the 2'-methyl substituted comparable time for duration of activity, indicating that a greater extent of alkylation gave greater duration times. This was also the case among the 2',6'-dimethyl derivatives, where the  $\alpha$ -propyl and  $\alpha$ -butyl compounds had the longest duration times. Times of onset of action were comparable in both series and were somewhat less than that of lidocaine. Duration times in both series were significantly greater than that for lidocaine.

Determination of the degree of spinal anesthesia in sheep, using the method of Lebeaux (11), was also done with four of the 2',6'-dimethyl series, including one non-N-butyl derivative. Times of onset of activity as well as duration of anal block, digital block, and motor block were



# 'Table III—Physical Properties of 2-N,N-Dialkylaminoacyl-2'-methyl (or 2, $\dot{i}6'$ -Dimethyl)-4'-aminoanilides

|    |                               |                 |                               |                 | %,        |               |                                                  | IR, C=0          |      | Analys             | is, %          |
|----|-------------------------------|-----------------|-------------------------------|-----------------|-----------|---------------|--------------------------------------------------|------------------|------|--------------------|----------------|
|    | R <sub>1</sub>                | R <sub>2</sub>  | R <sub>3</sub>                | R               | Yield     | mp            | Formula                                          | cm <sup>-1</sup> | pKa  | Calc.              | Found          |
| 1  | н                             | Н               | Н                             | CH <sub>3</sub> | 95        | 100.5 - 102   | C <sub>11</sub> H <sub>17</sub> N <sub>3</sub> O | 1650             | 7.39 | C 63.74            | 63.77          |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | H 8.27<br>N 20.27  | 8.15<br>20.29  |
| 2  | Н                             | н               | Н                             | $C_2H_5$        | 90        | 53 - 54       | $C_{13}H_{21}N_{3}O$                             | 1670             | 7.85 | C 66.35            | 66.37          |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | H 8.99<br>N 17.86  | 8.89<br>17.88  |
| 3  | н                             | н               | $CH_3$                        | $CH_3$          | 82        | 76-78         | $C_{12}H_{19}N_{3}O$                             | 1635             | 7.30 | C 65.13            | 65.20          |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | H 8.65             | 65.20<br>8.61  |
| 4  | н                             | н               | $CH_3$                        | $C_2H_5$        | 81        | 77–78         | $C_{14}H_{23}N_{3}O$                             | 1670             | 8.01 | N 18.99<br>C 67.44 | 19.05<br>67.32 |
|    |                               |                 | Ŭ                             | 2 0             |           |               | - 14- 20- 0                                      |                  |      | H 9.30             | 9.31           |
| 5  | н                             | н               | $C_2H_5$                      | CH <sub>3</sub> | 75        | 76-77         | C <sub>13</sub> H <sub>21</sub> N <sub>3</sub> O | 1650             | 7.23 | N 16.85<br>C 66.35 | 17.04<br>66.09 |
| Ū  | ••                            |                 | 02113                         | 0113            | 10        |               | 01311211130                                      | 1000             | 1.20 | H 8.99             | 8.81           |
| •  |                               |                 | 0.11                          | 0.11            | 0.0       | <b>#</b> 0.00 | <b>A M N A</b>                                   |                  |      | N 17.86            | 18.07          |
| 6  | н                             | Н               | $C_2H_5$                      | $C_2H_5$        | 89        | 78–80         | $\mathrm{C_{15}H_{25}N_{3}O}$                    | 1650             | 8.12 | C 68.40<br>H 9.57  | 68.32<br>9.58  |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | N 15.95            | 16.13          |
| 7  | н                             | H               | $C_3H_7$                      | CH <sub>3</sub> | 79        | 99-100        | $C_{14}H_{23}N_3O$                               | 1655             | 7.18 | C 67.44            | 67.47          |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | H 9.30<br>N 16.85  | 9.36<br>17.02  |
| 8  | Н                             | н               | C <sub>3</sub> H <sub>7</sub> | $C_2H_5$        | 72        | 52-53         | $C_{16}H_{27}N_{3}O$                             | 1675             | 7.92 | C 69.28            | 69.50          |
| 0  | 11                            |                 | 03117                         | 02110           | 12        | 02 00         | 016112/1130                                      | 1070             | 1.02 | H 9.81             | 9.83           |
|    |                               |                 | <b></b>                       | ~ •             |           |               | <i>a</i>                                         |                  |      | N 15.15            | 15.24          |
| 9  | Н                             | Н               | C4H9                          | $CH_3$          | 90        | 120-121       | $C_{15}H_{25}N_{3}O$                             | 1650             | 7.15 | C 68.40<br>H 9.57  | 68.63<br>9.63  |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | N 15.95            | 16.10          |
| 10 | Н                             | $CH_3$          | н                             | $CH_3$          | 85        | 129 - 130     | $C_{12}H_{19}N_3O$                               | 1660             | 7.27 | C 65.13            | 65.20          |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | H 8.65<br>N 18.99  | 8.55<br>19.11  |
| 11 | н                             | CH <sub>3</sub> | н                             | $C_2H_5$        | 80        | 101-103       | $C_{14}H_{23}N_{3}O$                             | 1660             | 7.80 | C 67.44            | 67.60          |
|    |                               | 0113            | •-                            | 02113           |           | 101 100       | 014-232.30                                       | 1000             |      | H 9.30             | 9.39           |
| 10 |                               | CU              | 0.11                          | CU              | <b>CO</b> | 139-141       | C14H23N3O                                        | 1650             | 7 15 | N 16.85            | 16.88          |
| 12 | н                             | $CH_3$          | $C_2H_5$                      | $CH_3$          | 69        | 139-141       | C14H23N3U                                        | 1650             | 7.15 | C 67.44<br>H 9.30  | 67.15<br>9.39  |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | N 16.85            | 16.54          |
| 13 | н                             | $CH_3$          | $C_2H_5$                      | $C_2H_5$        | 82        | 97-99         | $C_{16}H_{27}N_{3}O$                             | 1650             | 8.05 | C 69.28            | 69.01          |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | H 9.81<br>N 15.15  | 9.84<br>15.20  |
| 14 | н                             | CH <sub>3</sub> | $C_3H_7$                      | CH <sub>3</sub> | 70        | 179-181       | $C_{15}H_{25}N_{3}O$                             | 1650             | 7.20 | C 68.40            | 68.28          |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | H 9.57             | 9.63           |
| 15 | н                             | CH <sub>3</sub> | C <sub>3</sub> H <sub>7</sub> | $C_2H_5$        | 69        | 83-85         | C <sub>17</sub> H <sub>29</sub> N <sub>3</sub> O | 1650             | 7.85 | N 15.95<br>C 70.06 | 15.97<br>70.18 |
| 10 |                               | 0113            | 03117                         | 02113           | 00        | 00 00         | 01111291130                                      | 1000             |      | H 10.03            | 10.10          |
|    |                               |                 | <b>A</b> 11                   | 011             | 00        | 100 105       |                                                  | 1050             | - 01 | N 14.42            | 14.53          |
| 16 | Н                             | $CH_3$          | C₄H9                          | $CH_3$          | 82        | 183-185       | $C_{16}H_{27}N_{3}O$                             | 1650             | 7.01 | C 69.28<br>H 9.81  | 69.29<br>9.93  |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | N 15.15            | 15.23          |
| 17 | Н                             | $CH_3$          | $C_4H_9$                      | $C_2H_5$        | 65        | 90-92         | C <sub>18</sub> H <sub>31</sub> N <sub>3</sub> O | 1650             | 7.85 | C 70.78            | 70.90          |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | H 10.23<br>N 13.76 | 10.24<br>13.91 |
| 18 | C₄H9                          | н               | н                             | CH <sub>3</sub> | 89        | 50-51         | C <sub>15</sub> H <sub>25</sub> N <sub>3</sub> O | 1675             | 7.21 | C 68.40            | 68.40          |
| 10 | 04119                         |                 |                               | 0113            | 00        | 00 01         | 01311231130                                      | 1010             |      | H 9.57             | 9.47           |
| 10 | 0.11                          | TT              | T                             | сч              | 93        | 41-41.5       | C <sub>17</sub> H <sub>29</sub> N <sub>3</sub> O | 1675             | 7.67 | N 15.95<br>C 70.06 | 16.14          |
| 19 | C₄H9                          | Н               | Н                             | $C_2H_5$        | 90        | 41-41.0       | 01711291130                                      | 1675             | (.01 | C 70.06<br>H 10.03 | 69.63<br>9.99  |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | N 14.42            | 14.51          |
| 20 | C4H9                          | Н               | $CH_3$                        | $C_2H_5$        | 79        | 134–136       | $C_{18}H_{31}N_3O \cdot 2HCl \cdot H_2O$         | 1690             | 8.20 | C 54.49            | 54.41          |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | H 8.89<br>N 10.59  | 9.27<br>9.98   |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | Cl 17.87           | 17.77          |
| 21 | C <sub>4</sub> H <sub>9</sub> | Н               | $C_2H_5$                      | $CH_3$          | 84        | 55.5-57       | $C_{17}H_{29}N_3O$                               | 1660             | 7.25 | C 70.06            | 69.88          |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | H 10.03<br>N 14.42 | 9.91<br>14.31  |
| 22 | C <sub>4</sub> H <sub>9</sub> | н               | $C_2H_5$                      | $C_2H_5$        | 80        | 63-65         | $C_{19}H_{33}N_3O$                               | 1660             | 8.02 | C 71.43            | 71.40          |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | H 10.41<br>N 13.15 | 10.47          |
| 23 | C₄H9                          | н               | $C_3H_7$                      | CH <sub>3</sub> | 85        | 48–49         | C <sub>18</sub> H <sub>31</sub> N <sub>3</sub> O | 1665             | 7.25 | C 70.78            | 13.20<br>70.83 |
| 20 | C4119                         | -1              | ~311/                         | <b>U113</b>     | 00        | 10 10         | ~10**31*130                                      | 1000             | 1.20 | H 10.23            | 10.31          |
|    |                               |                 |                               |                 |           |               |                                                  |                  |      | N 13.76            | 13.8           |

684 / Journal of Pharmaceutical Sciences Vol. 71, No. 6, June 1982

|    | D              | <u>р</u> | R <sub>3</sub>                | R4       | %,<br>Yield | mp      | Formula                                                                       | IR, C=0<br>$cm^{-1}$ | рКа      | Analys<br>Calc.                          | is, %<br>Found                                                 |
|----|----------------|----------|-------------------------------|----------|-------------|---------|-------------------------------------------------------------------------------|----------------------|----------|------------------------------------------|----------------------------------------------------------------|
|    | R <sub>1</sub> | $R_2$    |                               |          |             | mp      |                                                                               |                      | <u> </u> |                                          |                                                                |
| 24 | C₄H9           | н        | C <sub>4</sub> H <sub>9</sub> | $CH_3$   | 86          | 163-165 | C <sub>19</sub> H <sub>33</sub> N <sub>3</sub> O·HCl                          | 1670                 | 7.12     | C 64.11<br>H 9.63<br>N 11.80<br>Cl 9.96  | $\begin{array}{c} 63.65 \\ 9.66 \\ 11.64 \\ 10.11 \end{array}$ |
| 25 | $C_4H_9$       | $CH_3$   | н                             | $C_2H_5$ | 81          | 39-40   | $C_{18}H_{31}N_3O$                                                            | 1670                 | 7.82     | C 70.78<br>H 10.23<br>N 13.76            | $70.92 \\ 10.14 \\ 13.82$                                      |
| 26 | C4H9           | CH3      | $C_2H_5$                      | $C_2H_5$ | 72          | 155–158 | C <sub>20</sub> H <sub>35</sub> N <sub>3</sub> O·2HCl·H <sub>2</sub> O        |                      | 8.05     | C 56.59<br>H 9.26<br>N 9.90<br>Cl 16.70  | $56.54 \\ 9.62 \\ 9.58 \\ 16.45$                               |
| 27 | $C_4H_9$       | $CH_3$   | $C_3H_7$                      | $CH_3$   | 90          | 45 - 47 | $C_{19}H_{33}N_3O$                                                            | 1660                 | 7.18     | C 71.43<br>H 10.41<br>N 13.15            | $71.51 \\ 10.54 \\ 13.20$                                      |
| 28 | C4H9           | CH3      | $C_3H_7$                      | $C_2H_5$ | 71          | 176–178 | C <sub>21</sub> H <sub>37</sub> N <sub>3</sub> O·2HCl·<br>0.7H <sub>2</sub> O | 1690                 | 7.77     | C 58.74<br>H 9.46<br>N 9.79<br>Cl 15.69  | 58.67<br>9.32<br>9.41<br>15.82                                 |
| 29 | C₄H9           | $CH_3$   | $C_4H_9$                      | $CH_3$   | 79          | 204-206 | C <sub>20</sub> H <sub>35</sub> N <sub>3</sub> O·2HCl·<br>O.5H <sub>2</sub> O | 1695                 | 7.22     | C 58.33<br>H 9.28<br>N 10.20<br>Cl 16.36 | 58.50<br>9.05<br>9.71<br>16.15                                 |

measured and are listed in Table V. With this determination, the non-N-butyl derivative tested (number 13) showed activity somewhat greater in duration than that of lidocaine. The three N-butyl compounds tested showed greater duration of activity than 13, but were significantly less than that of tetracaine. It is concluded that this series of compounds has local anesthetic potency intermediate between that of lidocaine and tetracaine.

Ionization constants are listed in Table III for the 4'-amino derivatives. No correlation is evident between local anesthetic potency and pKa values. A previous attempt to find a correlation between ionization constants, oil-water partition coefficients, and local anesthetic activity failed to give statistically significant results (12), although some general trends were noted. Also, IR absorption frequencies for carbonyl absorption are listed in Table III. A previous study (13) revealed an optimum absorption frequency range for good anesthetic potency, but no optimum range for carbonyl absorption is evident for the durations of activity reported here. However, a definite effect of the  $\alpha$ -substituent on increasing the wavelength at which carbonyl absorption occurs is apparent.

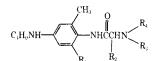
#### EXPERIMENTAL

Melting points were taken<sup>1</sup> and are uncorrected<sup>2</sup>. Infrared spectra were recorded on a spectrophotometer<sup>3</sup> using KBr pellets. TLC was carried out using silica gel plates, and the products were detected by exposure to iodine vapor or UV light. Organic reagents were supplied<sup>4-6</sup>.

**N-Haloacyl-2'-methyl (or 2',6'-dimethyl)-4'-nitroanilides**— Method 1—Chloroacetyl chloride (14.91 g, 0.132 mole) was added rapidly to a solution of 18.26 g (0.12 mole) of 2-methyl-4-nitroaniline in 100 ml of glacial acetic acid at 15°. A solution of 45.2 g of sodium acetate trihydrate in 200 ml of water at 10° was added quickly. The mixture was shaken for 35 min, and the product was filtered, washed with 50% hydrochloric acid and water and dried. Recrystallization was generally done with ethanol and charcoal.

Method 2—A mixture of 15.22 g (0.1 mole) of 2-methyl-4-nitroaniline, 7 ml (0.084 mole) of phosphorus trichloride, and 0.105 mole of 2bromocarboxylic acid in 250 ml of dry benzene was refluxed for 3 hr and filtered. The filtrate was evaporated, and the crude product was washed with 50% hydrochloric acid and water and dried. Recrystallization was done with aqueous ethanol and charcoal. Refluxing time for acylation of 2,6-dimethyl-4-nitroaniline was 24–48 hr.

Method 3—2,6-Dimethyl-4-nitroaniline (4) (15.0 g, 0.09 mole) and redistilled triethylamine (10.0 g, 0.1 mole) in 200 ml of anhydrous ether was cooled to  $0-5^{\circ}$ , and 14.12 g (0.125 mole) of chloroacetyl chloride was added dropwise with vigorous stirring and ice cooling for 1 hr. The mix-


ture was shaken for 6 hr at room temperature and the ether was evaporated under reduced pressure. The crude product was washed with 50% hydrochloric acid and water, dried, and recrystallized from ethanol and charcoal.

2-N,N-Dimethylaminoacyl-2'-methyl (or 2',6'-dimethyl)-4'nitroanilides—Dimethylamine hydrochloride (16.15 g, 0.198 mole) and anhydrous sodium bicarbonate (16.63 g, 0.198 mole) in 300 ml of anhydrous benzene was stirred for 30 min, and chloroacetyl-2'-methyl-4'nitroanilide (13.8 g, 0.066 mole) was added. The mixture was refluxed for 30 hr, cooled, and filtered. The benzene filtrate was extracted with four 80-ml portions of 1 N HCl, and the combined extracts were brought to pH 10 with 7 N NaOH solution. The precipitate was recrystalized from aqueous ethanol. When this method was applied to  $\alpha$ -haloacyl 2,6-dimethyl-4-nitroanilines, the refluxing required 4–6 days.

For preparation of the N,N-diethyl derivatives, redistilled diethylamine was used.

2-N,N-Dialkylaminoacyl-2'-methyl (or 2',6'-dimethyl)-4'-aminoanilides—To a stirred, boiling mixture of powdered iron (10.35 g, 0.185 mole), ethanol (85 ml), water (25 ml), and concentrated hydrochloric acid (1 ml) was added in 7.0-g portions (0.026 mole) of N,N-diethylaminoacetyl-2'-methyl-4'-nitroanilide. The heat source was removed during the addition. The mixture was stirred and boiled gently for 35 min, cautiously treated with 10.0 g of powdered sodium bicarbonate, stirred at boiling for 10 min, and filtered hot. The filter cake was washed with hot alcohol, and the alcohol was removed in vacuo. The residue was added to 15 ml of water and extracted three times with ethyl acetate. The extract was

# Table IV—Local Anesthetic Activity: Method of Loss of Reflex by the Rabbit Cornea



| Number <sup>a</sup> | $R_1$  | $R_2$                         | $\mathbf{R}_3$  | Onset,<br>sec | Duration,<br>min |
|---------------------|--------|-------------------------------|-----------------|---------------|------------------|
| 18                  | Н      | н                             | CH <sub>3</sub> | 45            | 40               |
| 19                  | н      | н                             | $C_2H_5$        | 25            | 65               |
| 20                  | Н      | $CH_3$                        | $C_2H_5$        | 40            | 50               |
| 21                  | н      | $C_2 H_5$                     | $CH_3$          | 30            | 35               |
| 22                  | н      | $C_2H_5$                      | $C_2 H_5$       | 55            | 40               |
| 23                  | н      | $C_3H_7$                      | $CH_3$          | 15            | 55               |
| 24                  | н      | C <sub>4</sub> H <sub>9</sub> | $CH_3$          | 30            | 90               |
| 25                  | $CH_3$ | H                             | $C_2 H_5$       | 30            | 65               |
| 26                  | $CH_3$ | $C_2H_5$                      | $C_2H_5$        | 25            | 75               |
| 27                  | $CH_3$ | $C_3H_7$                      | $CH_3$          | 35            | 100              |
| 28                  | $CH_3$ | $C_3H_7$                      | $C_2H_5$        | 20            | 120              |
| 29                  | $CH_3$ | C₄H <sub>9</sub>              | $C_2H_5$        | 65            | 105              |
| Lidocai             | ne     |                               | - 0             | 90 - 120      | 20 - 25          |

<sup>a</sup> 1% solutions, pH  $\sim$ 6.7, were tested.

<sup>&</sup>lt;sup>1</sup> Mel-Temp apparatus.

 <sup>&</sup>lt;sup>2</sup> Microanalyses were done by Dr. F. B. Strauss, Oxford, England.
 <sup>3</sup> Perkin-Elmer spectrophotometer Model 457A.

<sup>&</sup>lt;sup>4</sup> Aldrich Chemical Co.

<sup>&</sup>lt;sup>4</sup> Aldrich Chemical Co. <sup>5</sup> Fisher Scientific Co.

<sup>&</sup>lt;sup>6</sup> J. T. Baker Chemical Co.

| Table V-Local Anesthetic Activity: Spinal | Anesthesia in the Sheep |
|-------------------------------------------|-------------------------|
|-------------------------------------------|-------------------------|

|            |                       |      | Number         | Onset             |               | Duration, min    | Complete       |                         |
|------------|-----------------------|------|----------------|-------------------|---------------|------------------|----------------|-------------------------|
| Number     | %, Concen-<br>tration | pH   | of<br>Animals  | (Anal),<br>Min    | Anal<br>Block | Digital<br>Block | Motor<br>Block | Recovery,<br>Min<br>178 |
| 11         | 2.0                   | 6.5  | 2              | 1-2               | 73            | 78               | 73ª            | 178                     |
| 25         | 0.25                  | 6.0  | $\overline{2}$ | $\bar{3}-\bar{5}$ | 25            | 18ª              | $20^{b}$       | 60                      |
|            | 1.0                   | 6.0  | 2              | 1.5               | 100           | 100              | 80             | 158                     |
| 26         | 1.0                   | 5.9  | 3              | 1                 | 169           | 129              | 88°            | 320                     |
| 27         | 1.0                   | 5.3  | 2              | ĩ                 | 180           | 142              | 36             | >360 <sup>d</sup>       |
| Lidocaine  | 1.5                   | 6.7  | 6              | 1                 | $61 \pm 16$   | $51 \pm 9$       | $24 \pm 7$     | $95 \pm 21$             |
| Tetracaine | 0.5                   | 6.25 | 6              | $\bar{1}$ -1.5    | $302 \pm 66$  | $285 \pm 46$     | $208 \pm 77$   | $>360^{d}$              |
| Clucose    | 5.0                   | 6.2  | 4              |                   | 0             |                  | 0              | - 000                   |

<sup>a</sup> Frequency 75%. <sup>b</sup> Frequency 50%. <sup>c</sup> Frequency 67%. <sup>d</sup> Less than 24 hr.

dried  $(MgSO_4)$  and concentrated to a small volume. The syrupy residue was recrystallized from benzene-commercial hexane<sup>7</sup>.

2-N, N-Dialkylaminoacyl-2'-methyl (or 2',6'-dimethyl)-4'-(p-toluenesulfonamido)anilides—2-Dimethylaminoacetyl-2'-methyl-4'-aminoanilide (4.2 g, 0.021 mole) and redistilled pyridine (1.5 ml) in 40 ml of methylene chloride was cooled to 0°, and 4.46 g (0.023 mole) of p-toluenesulfonyl chloride was added slowly with stirring and ice-cooling during 30 min. The mixture was stirred for several hr at 0-5°, methylene chloride was removed in vacuo, and the residue was added to 80 ml of water. The pH was adjusted to 10 with dilute sodium hydroxide solution, the solution was extracted with ethyl acetate, and the extract was dried (MgSO<sub>4</sub>). It was concentrated to a small volume, and the residue was recrystallized from benzene–commercial hexane<sup>7</sup>.

2-N,N-Dialkylaminoacyl-2'-methyl (or 2',6'-dimethyl)-4'-(N'butyl-p-toluenesulfonamido)anilides—2-Dimethylaminoacetyl-2'methyl-4'-(p-toluenesulfonamido)anilide (2.8 g, 0.0078 mole), anhydrous potassium carbonate (4.31 g, 0.031 mole), and redistilled *n*-butyl bromide (9.62 g, 0.0702 mole) in 70 ml of dry acetone was stirred at room temperature for 7 days. The mixture was filtered, and acetone was removed in a rotary evaporator. The residual syrup was crystallized from benzeneor ether-commercial hexane<sup>7</sup>.

2-N,N-Dialkylaminoacyl-2'-methyl (or 2',6'-dimethyl)-4'butylaminoanilides—Naphthalene (4.64 g, 0.036 mole) in 30 ml of 1,2-dimethoxyethane was kept under nitrogen, and 0.83 g (0.036 mole) of sodium was added. After 5 min, 2.49 g (0.006 mole) of 2-dimethylaminoacetyl-2'-methyl-4'-(N'-butyl-p-toluenesulfonamido) anilide in 10 ml of 1,2-dimethoxyethane was added, and the solution was kept at room temperature under nitrogen for 80 min. Water was added to quench the reaction, and the solvent was removed in a rotary evaporator. The residue was added to 50 ml of water, the pH was brought to  $\sim$ 2, and the solution was extracted three times with ether. The aqueous solution was adjusted to pH 10 and extracted with ethyl acetate. The extract was dried (MgSO<sub>4</sub>) and concentrated, and the residual syrup was crystallized from hexane.

Local Anesthetic Evaluation—Primary local anesthetic testing was done by measuring loss of reflex of the rabbit cornea according to Rose (10). Each compound was tested in sterile 1% aqueous solution, pH 6.7, using 1% lidocaine solution, containing no epinephrine, as standard. The test solution (3–4 drops) was applied to one eye of the rabbit, the other eye being treated with control solution, pH 6.7, containing no anesthetic. Using a soft cotton filament rolled to a fine point, the time at which loss of reflex on touching with the filament was recorded to indicate onset of action. The procedure was continued, and the time at which reflex activity returned was recorded for duration of action.

The extent of spinal anesthesia in the sheep was determined according to the procedure of Lebeaux (11). Sterile solutions (2 ml) of the test

<sup>7</sup> Skellysolve B.

compounds at the concentrations indicated in Table V and containing glucose (50 mg/ml) were injected intrathecally between the L6 and S1 vertebra. Onset and duration times for sensory blocks from the anal and digital (hind limb) areas were recorded, and for motor block when the animals were able to stand. Frequency of block was 100% except where indicated. Lidocaine (1.5%) and tetracaine (0.5%) solutions were used as standards and glucose (5.0%) solution as control.

**Ionization Constants**—Determination of ionization constants was done according to the procedure of Albert and Serjeant (14) using a pH meter<sup>8</sup> with glass and calomel electrodes. Titrations of 0.001 M aqueous solutions of the compounds were made with 0.01 N KOH in 0.5-ml portions. Each titration yielded 10 pH values, giving 10 values for the pKa's, which were averaged. If pH values fell outside the 5–9 range, corrections were made for hydrogen or hydroxide ion concentrations.

### REFERENCES

(1) B. H. Takman and H. J. Adams, in "Burger's Medicinal Chemistry," 4th ed., M. E. Wolff, Ed., Wiley, New York, N.Y., 1981, p. 661.

(2) T. D. Whittet, Anesthesia, 9, 271 (1954).

(2) F. Hankanan, Ann. Anal. Sci. Trans. 00, 0

(3) E. Honkanen, Ann. Acad. Sci. Fenn., 99, 80 (1960).

(4) B. M. Wepster, Rec. Trav. Chim. Pays-Bas, 73, 809 (1954).

(5) N. Löfgren, Ark. Kemi Mineral. Geol., 22A, 1 (1946).

(6) H. Lemaire, C. H. Schramm, and A. Cahn, J. Pharm. Sci., 50, 831 (1961).

(7) R. O. Clinton, S. C. Laskowski, U. J. Salvador, and M. Wilson, J. Am. Chem. Soc., 73, 3674 (1951).

(8) J. B. Hendrickson and R. Bergeron, Tetrahedron Lett., No. 5, 345 (1970).

(9) J. Kovacs and N. R. Ghatak, J. Org. Chem., 31, 119 (1966).

(10) C. L. Rose, Anesth. Analg., 10, 159 (1931).

(11) M. Lebeaux, Lab. Animal Sci., 25, 629 (1975).

(12) W. L. McKenzie and W. O. Foye, J. Med. Chem., 15, 291 (1972).

(13) W. O. Foye, H. B. Levine, and W. L. McKenzie, *ibid.*, 9, 61 (1966).

(14) A. Albert and E. P. Serjeant, "The Determination of Ionization Constants," Chapman and Hall, London, England, 1971.

### ACKNOWLEDGMENTS

Abstracted from a thesis submitted by C.-M. Jan to the Massachusetts College of Pharmacy and Allied Health Sciences in partial fulfillment of Doctor of Philosophy degree requirements.

Supported by funds from the John R. and Marie K. Sawyer Memorial Fund, Massachusetts College of Pharmacy and Allied Health Sciences.

<sup>8</sup> Beckman Research pH Meter.